mirror of
https://github.com/xmrig/xmrig.git
synced 2026-01-01 07:52:38 -05:00
323 lines
16 KiB
C++
323 lines
16 KiB
C++
/*
|
|
Copyright (c) 2025 SChernykh <https://github.com/SChernykh>
|
|
Copyright (c) 2025 XMRig <support@xmrig.com>
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the copyright holder nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <riscv_vector.h>
|
|
|
|
#include "crypto/randomx/soft_aes.h"
|
|
#include "crypto/randomx/randomx.h"
|
|
|
|
static FORCE_INLINE vuint32m1_t softaes_vector_double(
|
|
vuint32m1_t in,
|
|
vuint32m1_t key,
|
|
vuint8m1_t i0, vuint8m1_t i1, vuint8m1_t i2, vuint8m1_t i3,
|
|
const uint32_t* lut0, const uint32_t* lut1, const uint32_t *lut2, const uint32_t* lut3)
|
|
{
|
|
const vuint8m1_t in8 = __riscv_vreinterpret_v_u32m1_u8m1(in);
|
|
|
|
const vuint32m1_t index0 = __riscv_vreinterpret_v_u8m1_u32m1(__riscv_vrgather_vv_u8m1(in8, i0, 32));
|
|
const vuint32m1_t index1 = __riscv_vreinterpret_v_u8m1_u32m1(__riscv_vrgather_vv_u8m1(in8, i1, 32));
|
|
const vuint32m1_t index2 = __riscv_vreinterpret_v_u8m1_u32m1(__riscv_vrgather_vv_u8m1(in8, i2, 32));
|
|
const vuint32m1_t index3 = __riscv_vreinterpret_v_u8m1_u32m1(__riscv_vrgather_vv_u8m1(in8, i3, 32));
|
|
|
|
vuint32m1_t s0 = __riscv_vluxei32_v_u32m1(lut0, __riscv_vsll_vx_u32m1(index0, 2, 8), 8);
|
|
vuint32m1_t s1 = __riscv_vluxei32_v_u32m1(lut1, __riscv_vsll_vx_u32m1(index1, 2, 8), 8);
|
|
vuint32m1_t s2 = __riscv_vluxei32_v_u32m1(lut2, __riscv_vsll_vx_u32m1(index2, 2, 8), 8);
|
|
vuint32m1_t s3 = __riscv_vluxei32_v_u32m1(lut3, __riscv_vsll_vx_u32m1(index3, 2, 8), 8);
|
|
|
|
s0 = __riscv_vxor_vv_u32m1(s0, s1, 8);
|
|
s2 = __riscv_vxor_vv_u32m1(s2, s3, 8);
|
|
s0 = __riscv_vxor_vv_u32m1(s0, s2, 8);
|
|
|
|
return __riscv_vxor_vv_u32m1(s0, key, 8);
|
|
}
|
|
|
|
static constexpr uint32_t AES_HASH_1R_STATE02[8] = { 0x92b52c0d, 0x9fa856de, 0xcc82db47, 0xd7983aad, 0x6a770017, 0xae62c7d0, 0x5079506b, 0xe8a07ce4 };
|
|
static constexpr uint32_t AES_HASH_1R_STATE13[8] = { 0x338d996e, 0x15c7b798, 0xf59e125a, 0xace78057, 0x630a240c, 0x07ad828d, 0x79a10005, 0x7e994948 };
|
|
|
|
static constexpr uint32_t AES_GEN_1R_KEY02[8] = { 0x6daca553, 0x62716609, 0xdbb5552b, 0xb4f44917, 0x3f1262f1, 0x9f947ec6, 0xf4c0794f, 0x3e20e345 };
|
|
static constexpr uint32_t AES_GEN_1R_KEY13[8] = { 0x6d7caf07, 0x846a710d, 0x1725d378, 0x0da1dc4e, 0x6aef8135, 0xb1ba317c, 0x16314c88, 0x49169154 };
|
|
|
|
static constexpr uint32_t AES_HASH_1R_XKEY00[8] = { 0xf6fa8389, 0x8b24949f, 0x90dc56bf, 0x06890201, 0xf6fa8389, 0x8b24949f, 0x90dc56bf, 0x06890201 };
|
|
static constexpr uint32_t AES_HASH_1R_XKEY11[8] = { 0x61b263d1, 0x51f4e03c, 0xee1043c6, 0xed18f99b, 0x61b263d1, 0x51f4e03c, 0xee1043c6, 0xed18f99b };
|
|
|
|
static constexpr uint32_t AES_HASH_STRIDE_X2[8] = { 0, 4, 8, 12, 32, 36, 40, 44 };
|
|
static constexpr uint32_t AES_HASH_STRIDE_X4[8] = { 0, 4, 8, 12, 64, 68, 72, 76 };
|
|
|
|
template<int softAes>
|
|
void hashAes1Rx4_RVV(const void *input, size_t inputSize, void *hash) {
|
|
const uint8_t* inptr = (const uint8_t*)input;
|
|
const uint8_t* inputEnd = inptr + inputSize;
|
|
|
|
//intial state
|
|
vuint32m1_t state02 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE02, 8);
|
|
vuint32m1_t state13 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE13, 8);
|
|
|
|
const vuint32m1_t stride = __riscv_vle32_v_u32m1(AES_HASH_STRIDE_X2, 8);
|
|
|
|
const vuint8m1_t lutenc_index0 = __riscv_vle8_v_u8m1(lutEncIndex[0], 32);
|
|
const vuint8m1_t lutenc_index1 = __riscv_vle8_v_u8m1(lutEncIndex[1], 32);
|
|
const vuint8m1_t lutenc_index2 = __riscv_vle8_v_u8m1(lutEncIndex[2], 32);
|
|
const vuint8m1_t lutenc_index3 = __riscv_vle8_v_u8m1(lutEncIndex[3], 32);
|
|
|
|
const vuint8m1_t& lutdec_index0 = lutenc_index0;
|
|
const vuint8m1_t lutdec_index1 = __riscv_vle8_v_u8m1(lutDecIndex[1], 32);
|
|
const vuint8m1_t& lutdec_index2 = lutenc_index2;
|
|
const vuint8m1_t lutdec_index3 = __riscv_vle8_v_u8m1(lutDecIndex[3], 32);
|
|
|
|
//process 64 bytes at a time in 4 lanes
|
|
while (inptr < inputEnd) {
|
|
state02 = softaes_vector_double(state02, __riscv_vluxei32_v_u32m1((uint32_t*)inptr + 0, stride, 8), lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
state13 = softaes_vector_double(state13, __riscv_vluxei32_v_u32m1((uint32_t*)inptr + 4, stride, 8), lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
inptr += 64;
|
|
}
|
|
|
|
//two extra rounds to achieve full diffusion
|
|
const vuint32m1_t xkey00 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY00, 8);
|
|
const vuint32m1_t xkey11 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY11, 8);
|
|
|
|
state02 = softaes_vector_double(state02, xkey00, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
state13 = softaes_vector_double(state13, xkey00, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
state02 = softaes_vector_double(state02, xkey11, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
state13 = softaes_vector_double(state13, xkey11, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
//output hash
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 0, stride, state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 4, stride, state13, 8);
|
|
}
|
|
|
|
template void hashAes1Rx4_RVV<false>(const void *input, size_t inputSize, void *hash);
|
|
template void hashAes1Rx4_RVV<true>(const void *input, size_t inputSize, void *hash);
|
|
|
|
template<int softAes>
|
|
void fillAes1Rx4_RVV(void *state, size_t outputSize, void *buffer) {
|
|
const uint8_t* outptr = (uint8_t*)buffer;
|
|
const uint8_t* outputEnd = outptr + outputSize;
|
|
|
|
const vuint32m1_t key02 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY02, 8);
|
|
const vuint32m1_t key13 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY13, 8);
|
|
|
|
const vuint32m1_t stride = __riscv_vle32_v_u32m1(AES_HASH_STRIDE_X2, 8);
|
|
|
|
vuint32m1_t state02 = __riscv_vluxei32_v_u32m1((uint32_t*)state + 0, stride, 8);
|
|
vuint32m1_t state13 = __riscv_vluxei32_v_u32m1((uint32_t*)state + 4, stride, 8);
|
|
|
|
const vuint8m1_t lutenc_index0 = __riscv_vle8_v_u8m1(lutEncIndex[0], 32);
|
|
const vuint8m1_t lutenc_index1 = __riscv_vle8_v_u8m1(lutEncIndex[1], 32);
|
|
const vuint8m1_t lutenc_index2 = __riscv_vle8_v_u8m1(lutEncIndex[2], 32);
|
|
const vuint8m1_t lutenc_index3 = __riscv_vle8_v_u8m1(lutEncIndex[3], 32);
|
|
|
|
const vuint8m1_t& lutdec_index0 = lutenc_index0;
|
|
const vuint8m1_t lutdec_index1 = __riscv_vle8_v_u8m1(lutDecIndex[1], 32);
|
|
const vuint8m1_t& lutdec_index2 = lutenc_index2;
|
|
const vuint8m1_t lutdec_index3 = __riscv_vle8_v_u8m1(lutDecIndex[3], 32);
|
|
|
|
while (outptr < outputEnd) {
|
|
state02 = softaes_vector_double(state02, key02, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
state13 = softaes_vector_double(state13, key13, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)outptr + 0, stride, state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)outptr + 4, stride, state13, 8);
|
|
|
|
outptr += 64;
|
|
}
|
|
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)state + 0, stride, state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)state + 4, stride, state13, 8);
|
|
}
|
|
|
|
template void fillAes1Rx4_RVV<false>(void *state, size_t outputSize, void *buffer);
|
|
template void fillAes1Rx4_RVV<true>(void *state, size_t outputSize, void *buffer);
|
|
|
|
template<int softAes>
|
|
void fillAes4Rx4_RVV(void *state, size_t outputSize, void *buffer) {
|
|
const uint8_t* outptr = (uint8_t*)buffer;
|
|
const uint8_t* outputEnd = outptr + outputSize;
|
|
|
|
const vuint32m1_t stride4 = __riscv_vle32_v_u32m1(AES_HASH_STRIDE_X4, 8);
|
|
|
|
const vuint32m1_t key04 = __riscv_vluxei32_v_u32m1((uint32_t*)(RandomX_CurrentConfig.fillAes4Rx4_Key + 0), stride4, 8);
|
|
const vuint32m1_t key15 = __riscv_vluxei32_v_u32m1((uint32_t*)(RandomX_CurrentConfig.fillAes4Rx4_Key + 1), stride4, 8);
|
|
const vuint32m1_t key26 = __riscv_vluxei32_v_u32m1((uint32_t*)(RandomX_CurrentConfig.fillAes4Rx4_Key + 2), stride4, 8);
|
|
const vuint32m1_t key37 = __riscv_vluxei32_v_u32m1((uint32_t*)(RandomX_CurrentConfig.fillAes4Rx4_Key + 3), stride4, 8);
|
|
|
|
const vuint32m1_t stride = __riscv_vle32_v_u32m1(AES_HASH_STRIDE_X2, 8);
|
|
|
|
vuint32m1_t state02 = __riscv_vluxei32_v_u32m1((uint32_t*)state + 0, stride, 8);
|
|
vuint32m1_t state13 = __riscv_vluxei32_v_u32m1((uint32_t*)state + 4, stride, 8);
|
|
|
|
const vuint8m1_t lutenc_index0 = __riscv_vle8_v_u8m1(lutEncIndex[0], 32);
|
|
const vuint8m1_t lutenc_index1 = __riscv_vle8_v_u8m1(lutEncIndex[1], 32);
|
|
const vuint8m1_t lutenc_index2 = __riscv_vle8_v_u8m1(lutEncIndex[2], 32);
|
|
const vuint8m1_t lutenc_index3 = __riscv_vle8_v_u8m1(lutEncIndex[3], 32);
|
|
|
|
const vuint8m1_t& lutdec_index0 = lutenc_index0;
|
|
const vuint8m1_t lutdec_index1 = __riscv_vle8_v_u8m1(lutDecIndex[1], 32);
|
|
const vuint8m1_t& lutdec_index2 = lutenc_index2;
|
|
const vuint8m1_t lutdec_index3 = __riscv_vle8_v_u8m1(lutDecIndex[3], 32);
|
|
|
|
while (outptr < outputEnd) {
|
|
state02 = softaes_vector_double(state02, key04, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
state13 = softaes_vector_double(state13, key04, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
|
|
state02 = softaes_vector_double(state02, key15, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
state13 = softaes_vector_double(state13, key15, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
|
|
state02 = softaes_vector_double(state02, key26, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
state13 = softaes_vector_double(state13, key26, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
|
|
state02 = softaes_vector_double(state02, key37, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
state13 = softaes_vector_double(state13, key37, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)outptr + 0, stride, state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)outptr + 4, stride, state13, 8);
|
|
|
|
outptr += 64;
|
|
}
|
|
}
|
|
|
|
template void fillAes4Rx4_RVV<false>(void *state, size_t outputSize, void *buffer);
|
|
template void fillAes4Rx4_RVV<true>(void *state, size_t outputSize, void *buffer);
|
|
|
|
template<int softAes, int unroll>
|
|
void hashAndFillAes1Rx4_RVV(void *scratchpad, size_t scratchpadSize, void *hash, void* fill_state) {
|
|
uint8_t* scratchpadPtr = (uint8_t*)scratchpad;
|
|
const uint8_t* scratchpadEnd = scratchpadPtr + scratchpadSize;
|
|
|
|
vuint32m1_t hash_state02 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE02, 8);
|
|
vuint32m1_t hash_state13 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE13, 8);
|
|
|
|
const vuint32m1_t key02 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY02, 8);
|
|
const vuint32m1_t key13 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY13, 8);
|
|
|
|
const vuint32m1_t stride = __riscv_vle32_v_u32m1(AES_HASH_STRIDE_X2, 8);
|
|
|
|
vuint32m1_t fill_state02 = __riscv_vluxei32_v_u32m1((uint32_t*)fill_state + 0, stride, 8);
|
|
vuint32m1_t fill_state13 = __riscv_vluxei32_v_u32m1((uint32_t*)fill_state + 4, stride, 8);
|
|
|
|
const vuint8m1_t lutenc_index0 = __riscv_vle8_v_u8m1(lutEncIndex[0], 32);
|
|
const vuint8m1_t lutenc_index1 = __riscv_vle8_v_u8m1(lutEncIndex[1], 32);
|
|
const vuint8m1_t lutenc_index2 = __riscv_vle8_v_u8m1(lutEncIndex[2], 32);
|
|
const vuint8m1_t lutenc_index3 = __riscv_vle8_v_u8m1(lutEncIndex[3], 32);
|
|
|
|
const vuint8m1_t& lutdec_index0 = lutenc_index0;
|
|
const vuint8m1_t lutdec_index1 = __riscv_vle8_v_u8m1(lutDecIndex[1], 32);
|
|
const vuint8m1_t& lutdec_index2 = lutenc_index2;
|
|
const vuint8m1_t lutdec_index3 = __riscv_vle8_v_u8m1(lutDecIndex[3], 32);
|
|
|
|
//process 64 bytes at a time in 4 lanes
|
|
while (scratchpadPtr < scratchpadEnd) {
|
|
#define HASH_STATE(k) \
|
|
hash_state02 = softaes_vector_double(hash_state02, __riscv_vluxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 0, stride, 8), lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3); \
|
|
hash_state13 = softaes_vector_double(hash_state13, __riscv_vluxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 4, stride, 8), lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
#define FILL_STATE(k) \
|
|
fill_state02 = softaes_vector_double(fill_state02, key02, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3); \
|
|
fill_state13 = softaes_vector_double(fill_state13, key13, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3); \
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 0, stride, fill_state02, 8); \
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 4, stride, fill_state13, 8);
|
|
|
|
switch (softAes) {
|
|
case 0:
|
|
HASH_STATE(0);
|
|
HASH_STATE(1);
|
|
|
|
FILL_STATE(0);
|
|
FILL_STATE(1);
|
|
|
|
scratchpadPtr += 128;
|
|
break;
|
|
|
|
default:
|
|
switch (unroll) {
|
|
case 4:
|
|
HASH_STATE(0);
|
|
FILL_STATE(0);
|
|
|
|
HASH_STATE(1);
|
|
FILL_STATE(1);
|
|
|
|
HASH_STATE(2);
|
|
FILL_STATE(2);
|
|
|
|
HASH_STATE(3);
|
|
FILL_STATE(3);
|
|
|
|
scratchpadPtr += 64 * 4;
|
|
break;
|
|
|
|
case 2:
|
|
HASH_STATE(0);
|
|
FILL_STATE(0);
|
|
|
|
HASH_STATE(1);
|
|
FILL_STATE(1);
|
|
|
|
scratchpadPtr += 64 * 2;
|
|
break;
|
|
|
|
default:
|
|
HASH_STATE(0);
|
|
FILL_STATE(0);
|
|
|
|
scratchpadPtr += 64;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
#undef HASH_STATE
|
|
#undef FILL_STATE
|
|
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)fill_state + 0, stride, fill_state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)fill_state + 4, stride, fill_state13, 8);
|
|
|
|
//two extra rounds to achieve full diffusion
|
|
const vuint32m1_t xkey00 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY00, 8);
|
|
const vuint32m1_t xkey11 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY11, 8);
|
|
|
|
hash_state02 = softaes_vector_double(hash_state02, xkey00, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
hash_state13 = softaes_vector_double(hash_state13, xkey00, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
hash_state02 = softaes_vector_double(hash_state02, xkey11, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
|
|
hash_state13 = softaes_vector_double(hash_state13, xkey11, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
|
|
|
|
//output hash
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 0, stride, hash_state02, 8);
|
|
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 4, stride, hash_state13, 8);
|
|
}
|
|
|
|
template void hashAndFillAes1Rx4_RVV<0,2>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
|
|
template void hashAndFillAes1Rx4_RVV<1,1>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
|
|
template void hashAndFillAes1Rx4_RVV<2,1>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
|
|
template void hashAndFillAes1Rx4_RVV<2,2>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
|
|
template void hashAndFillAes1Rx4_RVV<2,4>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
|