#include "defs.h" // // DAG calculation logic // #define ETHASH_DATASET_PARENTS 512 #define NODE_WORDS (64 / 4) __constant uint2 const Keccak_f1600_RC[24] = { (uint2)(0x00000001, 0x00000000), (uint2)(0x00008082, 0x00000000), (uint2)(0x0000808a, 0x80000000), (uint2)(0x80008000, 0x80000000), (uint2)(0x0000808b, 0x00000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008009, 0x80000000), (uint2)(0x0000008a, 0x00000000), (uint2)(0x00000088, 0x00000000), (uint2)(0x80008009, 0x00000000), (uint2)(0x8000000a, 0x00000000), (uint2)(0x8000808b, 0x00000000), (uint2)(0x0000008b, 0x80000000), (uint2)(0x00008089, 0x80000000), (uint2)(0x00008003, 0x80000000), (uint2)(0x00008002, 0x80000000), (uint2)(0x00000080, 0x80000000), (uint2)(0x0000800a, 0x00000000), (uint2)(0x8000000a, 0x80000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008080, 0x80000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008008, 0x80000000), }; #if PLATFORM == OPENCL_PLATFORM_NVIDIA && COMPUTE >= 35 static uint2 ROL2(const uint2 a, const int offset) { uint2 result; if (offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } return result; } #elif PLATFORM == OPENCL_PLATFORM_AMD #pragma OPENCL EXTENSION cl_amd_media_ops : enable static uint2 ROL2(const uint2 vv, const int r) { if (r <= 32) { return amd_bitalign((vv).xy, (vv).yx, 32 - r); } else { return amd_bitalign((vv).yx, (vv).xy, 64 - r); } } #else static uint2 ROL2(const uint2 v, const int n) { uint2 result; if (n <= 32) { result.y = ((v.y << (n)) | (v.x >> (32 - n))); result.x = ((v.x << (n)) | (v.y >> (32 - n))); } else { result.y = ((v.x << (n - 32)) | (v.y >> (64 - n))); result.x = ((v.y << (n - 32)) | (v.x >> (64 - n))); } return result; } #endif static void chi(uint2* a, const uint n, const uint2* t) { a[n + 0] = bitselect(t[n + 0] ^ t[n + 2], t[n + 0], t[n + 1]); a[n + 1] = bitselect(t[n + 1] ^ t[n + 3], t[n + 1], t[n + 2]); a[n + 2] = bitselect(t[n + 2] ^ t[n + 4], t[n + 2], t[n + 3]); a[n + 3] = bitselect(t[n + 3] ^ t[n + 0], t[n + 3], t[n + 4]); a[n + 4] = bitselect(t[n + 4] ^ t[n + 1], t[n + 4], t[n + 0]); } static void keccak_f1600_round(uint2* a, uint r) { uint2 t[25]; uint2 u; // Theta t[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]; t[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]; t[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]; t[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]; t[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]; u = t[4] ^ ROL2(t[1], 1); a[0] ^= u; a[5] ^= u; a[10] ^= u; a[15] ^= u; a[20] ^= u; u = t[0] ^ ROL2(t[2], 1); a[1] ^= u; a[6] ^= u; a[11] ^= u; a[16] ^= u; a[21] ^= u; u = t[1] ^ ROL2(t[3], 1); a[2] ^= u; a[7] ^= u; a[12] ^= u; a[17] ^= u; a[22] ^= u; u = t[2] ^ ROL2(t[4], 1); a[3] ^= u; a[8] ^= u; a[13] ^= u; a[18] ^= u; a[23] ^= u; u = t[3] ^ ROL2(t[0], 1); a[4] ^= u; a[9] ^= u; a[14] ^= u; a[19] ^= u; a[24] ^= u; // Rho Pi t[0] = a[0]; t[10] = ROL2(a[1], 1); t[20] = ROL2(a[2], 62); t[5] = ROL2(a[3], 28); t[15] = ROL2(a[4], 27); t[16] = ROL2(a[5], 36); t[1] = ROL2(a[6], 44); t[11] = ROL2(a[7], 6); t[21] = ROL2(a[8], 55); t[6] = ROL2(a[9], 20); t[7] = ROL2(a[10], 3); t[17] = ROL2(a[11], 10); t[2] = ROL2(a[12], 43); t[12] = ROL2(a[13], 25); t[22] = ROL2(a[14], 39); t[23] = ROL2(a[15], 41); t[8] = ROL2(a[16], 45); t[18] = ROL2(a[17], 15); t[3] = ROL2(a[18], 21); t[13] = ROL2(a[19], 8); t[14] = ROL2(a[20], 18); t[24] = ROL2(a[21], 2); t[9] = ROL2(a[22], 61); t[19] = ROL2(a[23], 56); t[4] = ROL2(a[24], 14); // Chi chi(a, 0, t); // Iota a[0] ^= Keccak_f1600_RC[r]; chi(a, 5, t); chi(a, 10, t); chi(a, 15, t); chi(a, 20, t); } static void keccak_f1600_no_absorb(uint2* a, uint out_size, uint isolate) { // Originally I unrolled the first and last rounds to interface // better with surrounding code, however I haven't done this // without causing the AMD compiler to blow up the VGPR usage. // uint o = 25; for (uint r = 0; r < 24;) { // This dynamic branch stops the AMD compiler unrolling the loop // and additionally saves about 33% of the VGPRs, enough to gain another // wavefront. Ideally we'd get 4 in flight, but 3 is the best I can // massage out of the compiler. It doesn't really seem to matter how // much we try and help the compiler save VGPRs because it seems to throw // that information away, hence the implementation of keccak here // doesn't bother. if (isolate) { keccak_f1600_round(a, r++); // if (r == 23) o = out_size; } } // final round optimised for digest size // keccak_f1600_round(a, 23, out_size); } #define copy(dst, src, count) \ for (uint i = 0; i != count; ++i) \ { \ (dst)[i] = (src)[i]; \ } static uint fnv(uint x, uint y) { return x * FNV_PRIME ^ y; } static uint4 fnv4(uint4 x, uint4 y) { return x * FNV_PRIME ^ y; } typedef union { uint words[64 / sizeof(uint)]; uint2 uint2s[64 / sizeof(uint2)]; uint4 uint4s[64 / sizeof(uint4)]; } hash64_t; typedef union { uint words[200 / sizeof(uint)]; uint2 uint2s[200 / sizeof(uint2)]; uint4 uint4s[200 / sizeof(uint4)]; } hash200_t; typedef struct { uint4 uint4s[128 / sizeof(uint4)]; } hash128_t; static void SHA3_512(uint2* s, uint isolate) { for (uint i = 8; i != 25; ++i) { s[i] = (uint2){0, 0}; } s[8].x = 0x00000001; s[8].y = 0x80000000; keccak_f1600_no_absorb(s, 8, isolate); } static uint fast_mod(uint a, uint4 d) { const ulong t = a; const uint q = ((t + d.y) * d.x) >> d.z; return a - q * d.w; } __kernel void ethash_calculate_dag_item(uint start, __global hash64_t const* g_light, __global hash64_t* g_dag, uint isolate, uint dag_words, uint4 light_words) { uint const node_index = start + get_global_id(0); if (node_index >= dag_words) return; hash200_t dag_node; copy(dag_node.uint4s, g_light[fast_mod(node_index, light_words)].uint4s, 4); dag_node.words[0] ^= node_index; SHA3_512(dag_node.uint2s, isolate); for (uint i = 0; i != ETHASH_DATASET_PARENTS; ++i) { uint parent_index = fast_mod(fnv(node_index ^ i, dag_node.words[i % NODE_WORDS]), light_words); for (uint w = 0; w != 4; ++w) dag_node.uint4s[w] = fnv4(dag_node.uint4s[w], g_light[parent_index].uint4s[w]); } SHA3_512(dag_node.uint2s, isolate); copy(g_dag[node_index].uint4s, dag_node.uint4s, 4); }