1
0
mirror of https://github.com/xmrig/xmrig.git synced 2026-02-01 17:53:03 -05:00

RISC-V: auto-detect and use vector code for all RandomX AES functions

This commit is contained in:
SChernykh
2025-12-27 21:30:14 +01:00
parent f661e1eb30
commit e1efd3dc7f
6 changed files with 463 additions and 199 deletions

View File

@@ -38,6 +38,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "crypto/randomx/common.hpp"
#include "crypto/rx/Profiler.h"
#ifdef XMRIG_RISCV
#include "backend/cpu/Cpu.h"
#include "crypto/randomx/aes_hash_rv64_vector.hpp"
#endif
#define AES_HASH_1R_STATE0 0xd7983aad, 0xcc82db47, 0x9fa856de, 0x92b52c0d
#define AES_HASH_1R_STATE1 0xace78057, 0xf59e125a, 0x15c7b798, 0x338d996e
#define AES_HASH_1R_STATE2 0xe8a07ce4, 0x5079506b, 0xae62c7d0, 0x6a770017
@@ -59,7 +64,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Hashing throughput: >20 GiB/s per CPU core with hardware AES
*/
template<int softAes>
void hashAes1Rx4(const void *input, size_t inputSize, void *hash) {
void hashAes1Rx4(const void *input, size_t inputSize, void *hash)
{
#ifdef XMRIG_RISCV
if (xmrig::Cpu::info()->hasRISCV_Vector()) {
hashAes1Rx4_RVV<softAes>(input, inputSize, hash);
return;
}
#endif
const uint8_t* inptr = (uint8_t*)input;
const uint8_t* inputEnd = inptr + inputSize;
@@ -127,7 +140,15 @@ template void hashAes1Rx4<true>(const void *input, size_t inputSize, void *hash)
calls to this function.
*/
template<int softAes>
void fillAes1Rx4(void *state, size_t outputSize, void *buffer) {
void fillAes1Rx4(void *state, size_t outputSize, void *buffer)
{
#ifdef XMRIG_RISCV
if (xmrig::Cpu::info()->hasRISCV_Vector()) {
fillAes1Rx4_RVV<softAes>(state, outputSize, buffer);
return;
}
#endif
const uint8_t* outptr = (uint8_t*)buffer;
const uint8_t* outputEnd = outptr + outputSize;
@@ -171,7 +192,15 @@ static constexpr randomx::Instruction inst{ 0xFF, 7, 7, 0xFF, 0xFFFFFFFFU };
alignas(16) static const randomx::Instruction inst_mask[2] = { inst, inst };
template<int softAes>
void fillAes4Rx4(void *state, size_t outputSize, void *buffer) {
void fillAes4Rx4(void *state, size_t outputSize, void *buffer)
{
#ifdef XMRIG_RISCV
if (xmrig::Cpu::info()->hasRISCV_Vector()) {
fillAes4Rx4_RVV<softAes>(state, outputSize, buffer);
return;
}
#endif
const uint8_t* outptr = (uint8_t*)buffer;
const uint8_t* outputEnd = outptr + outputSize;
@@ -235,134 +264,17 @@ void fillAes4Rx4(void *state, size_t outputSize, void *buffer) {
template void fillAes4Rx4<true>(void *state, size_t outputSize, void *buffer);
template void fillAes4Rx4<false>(void *state, size_t outputSize, void *buffer);
#if defined(XMRIG_RISCV) && defined(XMRIG_RVV_ENABLED)
static constexpr uint32_t AES_HASH_1R_STATE02[8] = { 0x92b52c0d, 0x9fa856de, 0xcc82db47, 0xd7983aad, 0x6a770017, 0xae62c7d0, 0x5079506b, 0xe8a07ce4 };
static constexpr uint32_t AES_HASH_1R_STATE13[8] = { 0x338d996e, 0x15c7b798, 0xf59e125a, 0xace78057, 0x630a240c, 0x07ad828d, 0x79a10005, 0x7e994948 };
static constexpr uint32_t AES_GEN_1R_KEY02[8] = { 0x6daca553, 0x62716609, 0xdbb5552b, 0xb4f44917, 0x3f1262f1, 0x9f947ec6, 0xf4c0794f, 0x3e20e345 };
static constexpr uint32_t AES_GEN_1R_KEY13[8] = { 0x6d7caf07, 0x846a710d, 0x1725d378, 0x0da1dc4e, 0x6aef8135, 0xb1ba317c, 0x16314c88, 0x49169154 };
static constexpr uint32_t AES_HASH_1R_XKEY00[8] = { 0xf6fa8389, 0x8b24949f, 0x90dc56bf, 0x06890201, 0xf6fa8389, 0x8b24949f, 0x90dc56bf, 0x06890201 };
static constexpr uint32_t AES_HASH_1R_XKEY11[8] = { 0x61b263d1, 0x51f4e03c, 0xee1043c6, 0xed18f99b, 0x61b263d1, 0x51f4e03c, 0xee1043c6, 0xed18f99b };
static constexpr uint32_t AES_HASH_STRIDE[8] = { 0, 4, 8, 12, 32, 36, 40, 44 };
template<int softAes, int unroll>
void hashAndFillAes1Rx4(void *scratchpad, size_t scratchpadSize, void *hash, void* fill_state) {
void hashAndFillAes1Rx4(void *scratchpad, size_t scratchpadSize, void *hash, void* fill_state)
{
PROFILE_SCOPE(RandomX_AES);
uint8_t* scratchpadPtr = (uint8_t*)scratchpad;
const uint8_t* scratchpadEnd = scratchpadPtr + scratchpadSize;
vuint32m1_t hash_state02 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE02, 8);
vuint32m1_t hash_state13 = __riscv_vle32_v_u32m1(AES_HASH_1R_STATE13, 8);
const vuint32m1_t key02 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY02, 8);
const vuint32m1_t key13 = __riscv_vle32_v_u32m1(AES_GEN_1R_KEY13, 8);
const vuint32m1_t stride = __riscv_vle32_v_u32m1(AES_HASH_STRIDE, 8);
vuint32m1_t fill_state02 = __riscv_vluxei32_v_u32m1((uint32_t*)fill_state + 0, stride, 8);
vuint32m1_t fill_state13 = __riscv_vluxei32_v_u32m1((uint32_t*)fill_state + 4, stride, 8);
const vuint8m1_t lutenc_index0 = __riscv_vle8_v_u8m1(lutEncIndex[0], 32);
const vuint8m1_t lutenc_index1 = __riscv_vle8_v_u8m1(lutEncIndex[1], 32);
const vuint8m1_t lutenc_index2 = __riscv_vle8_v_u8m1(lutEncIndex[2], 32);
const vuint8m1_t lutenc_index3 = __riscv_vle8_v_u8m1(lutEncIndex[3], 32);
const vuint8m1_t& lutdec_index0 = lutenc_index0;
const vuint8m1_t lutdec_index1 = __riscv_vle8_v_u8m1(lutDecIndex[1], 32);
const vuint8m1_t& lutdec_index2 = lutenc_index2;
const vuint8m1_t lutdec_index3 = __riscv_vle8_v_u8m1(lutDecIndex[3], 32);
//process 64 bytes at a time in 4 lanes
while (scratchpadPtr < scratchpadEnd) {
#define HASH_STATE(k) \
hash_state02 = softaes_vector_double(hash_state02, __riscv_vluxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 0, stride, 8), lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3); \
hash_state13 = softaes_vector_double(hash_state13, __riscv_vluxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 4, stride, 8), lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
#define FILL_STATE(k) \
fill_state02 = softaes_vector_double(fill_state02, key02, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3); \
fill_state13 = softaes_vector_double(fill_state13, key13, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3); \
__riscv_vsuxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 0, stride, fill_state02, 8); \
__riscv_vsuxei32_v_u32m1((uint32_t*)scratchpadPtr + k * 16 + 4, stride, fill_state13, 8);
switch (softAes) {
case 0:
HASH_STATE(0);
HASH_STATE(1);
FILL_STATE(0);
FILL_STATE(1);
scratchpadPtr += 128;
break;
default:
switch (unroll) {
case 4:
HASH_STATE(0);
FILL_STATE(0);
HASH_STATE(1);
FILL_STATE(1);
HASH_STATE(2);
FILL_STATE(2);
HASH_STATE(3);
FILL_STATE(3);
scratchpadPtr += 64 * 4;
break;
case 2:
HASH_STATE(0);
FILL_STATE(0);
HASH_STATE(1);
FILL_STATE(1);
scratchpadPtr += 64 * 2;
break;
default:
HASH_STATE(0);
FILL_STATE(0);
scratchpadPtr += 64;
break;
}
break;
}
#ifdef XMRIG_RISCV
if (xmrig::Cpu::info()->hasRISCV_Vector()) {
hashAndFillAes1Rx4_RVV<softAes, unroll>(scratchpad, scratchpadSize, hash, fill_state);
return;
}
#undef HASH_STATE
#undef FILL_STATE
__riscv_vsuxei32_v_u32m1((uint32_t*)fill_state + 0, stride, fill_state02, 8);
__riscv_vsuxei32_v_u32m1((uint32_t*)fill_state + 4, stride, fill_state13, 8);
//two extra rounds to achieve full diffusion
const vuint32m1_t xkey00 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY00, 8);
const vuint32m1_t xkey11 = __riscv_vle32_v_u32m1(AES_HASH_1R_XKEY11, 8);
hash_state02 = softaes_vector_double(hash_state02, xkey00, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
hash_state13 = softaes_vector_double(hash_state13, xkey00, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
hash_state02 = softaes_vector_double(hash_state02, xkey11, lutenc_index0, lutenc_index1, lutenc_index2, lutenc_index3, lutEnc0, lutEnc1, lutEnc2, lutEnc3);
hash_state13 = softaes_vector_double(hash_state13, xkey11, lutdec_index0, lutdec_index1, lutdec_index2, lutdec_index3, lutDec0, lutDec1, lutDec2, lutDec3);
//output hash
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 0, stride, hash_state02, 8);
__riscv_vsuxei32_v_u32m1((uint32_t*)hash + 4, stride, hash_state13, 8);
}
#else // defined(XMRIG_RISCV) && defined(XMRIG_RVV_ENABLED)
template<int softAes, int unroll>
void hashAndFillAes1Rx4(void *scratchpad, size_t scratchpadSize, void *hash, void* fill_state) {
PROFILE_SCOPE(RandomX_AES);
#endif
uint8_t* scratchpadPtr = (uint8_t*)scratchpad;
const uint8_t* scratchpadEnd = scratchpadPtr + scratchpadSize;
@@ -500,7 +412,6 @@ void hashAndFillAes1Rx4(void *scratchpad, size_t scratchpadSize, void *hash, voi
rx_store_vec_i128((rx_vec_i128*)hash + 2, hash_state2);
rx_store_vec_i128((rx_vec_i128*)hash + 3, hash_state3);
}
#endif // defined(XMRIG_RISCV) && defined(XMRIG_RVV_ENABLED)
template void hashAndFillAes1Rx4<0,2>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
template void hashAndFillAes1Rx4<1,1>(void* scratchpad, size_t scratchpadSize, void* hash, void* fill_state);
@@ -512,43 +423,54 @@ hashAndFillAes1Rx4_impl* softAESImpl = &hashAndFillAes1Rx4<1,1>;
void SelectSoftAESImpl(size_t threadsCount)
{
constexpr uint64_t test_length_ms = 100;
const std::array<hashAndFillAes1Rx4_impl *, 4> impl = {
&hashAndFillAes1Rx4<1,1>,
&hashAndFillAes1Rx4<2,1>,
&hashAndFillAes1Rx4<2,2>,
&hashAndFillAes1Rx4<2,4>,
};
size_t fast_idx = 0;
double fast_speed = 0.0;
for (size_t run = 0; run < 3; ++run) {
for (size_t i = 0; i < impl.size(); ++i) {
const double t1 = xmrig::Chrono::highResolutionMSecs();
std::vector<uint32_t> count(threadsCount, 0);
std::vector<std::thread> threads;
for (size_t t = 0; t < threadsCount; ++t) {
threads.emplace_back([&, t]() {
std::vector<uint8_t> scratchpad(10 * 1024);
alignas(16) uint8_t hash[64] = {};
alignas(16) uint8_t state[64] = {};
do {
(*impl[i])(scratchpad.data(), scratchpad.size(), hash, state);
++count[t];
} while (xmrig::Chrono::highResolutionMSecs() - t1 < test_length_ms);
});
}
uint32_t total = 0;
for (size_t t = 0; t < threadsCount; ++t) {
threads[t].join();
total += count[t];
}
const double t2 = xmrig::Chrono::highResolutionMSecs();
const double speed = total * 1e3 / (t2 - t1);
if (speed > fast_speed) {
fast_idx = i;
fast_speed = speed;
}
}
}
softAESImpl = impl[fast_idx];
constexpr uint64_t test_length_ms = 100;
const std::array<hashAndFillAes1Rx4_impl *, 4> impl = {
&hashAndFillAes1Rx4<1,1>,
&hashAndFillAes1Rx4<2,1>,
&hashAndFillAes1Rx4<2,2>,
&hashAndFillAes1Rx4<2,4>,
};
size_t fast_idx = 0;
double fast_speed = 0.0;
for (size_t run = 0; run < 3; ++run) {
for (size_t i = 0; i < impl.size(); ++i) {
const double t1 = xmrig::Chrono::highResolutionMSecs();
std::vector<uint32_t> count(threadsCount, 0);
std::vector<std::thread> threads;
for (size_t t = 0; t < threadsCount; ++t) {
threads.emplace_back([&, t]() {
std::vector<uint8_t> scratchpad(10 * 1024);
alignas(16) uint8_t hash[64] = {};
alignas(16) uint8_t state[64] = {};
do {
(*impl[i])(scratchpad.data(), scratchpad.size(), hash, state);
++count[t];
} while (xmrig::Chrono::highResolutionMSecs() - t1 < test_length_ms);
});
}
uint32_t total = 0;
for (size_t t = 0; t < threadsCount; ++t) {
threads[t].join();
total += count[t];
}
const double t2 = xmrig::Chrono::highResolutionMSecs();
const double speed = total * 1e3 / (t2 - t1);
if (speed > fast_speed) {
fast_idx = i;
fast_speed = speed;
}
}
}
softAESImpl = impl[fast_idx];
}